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This inw:st_igation is concerned with the application of canomeal

transformation theory to the optimal trajectory problem. For a large class '

of trajectory optimization problems, the control variables can be uniquely

determined as functions of the state variables and Lagrange multipliers.

In this case, a new Hamiltonian, which only depends upon state variables

{generalized coordinates) and Lagrange multipliers {(generalized momenta},
can be defined from the generalized variational Hamiltonian, ’i‘hen, the
classi?:al perturbation theories of Hamiltonian mechanics are suitable for
t@g 6ptimdl trajectory problem.

“In this study, thz basic elemen‘ts of cénbﬁi_cal transqumation theory
are developed with‘consideration to the obtimal trajectory problem. The
theory ié used to obtain solutions to the Hamilton-Jacobi equati-on for the
ct')as/t-arC problem (i.e., the optimal trajectory.problem when thrust is
zero) fn both polar and spherical coordinates. These solutions may be
usqd as b.ase solutions for a canon-ical pgrturbation analysis or for the

deterrﬁination of qualitative aspects of the optimal low~thrust problem.
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"mechanics and atomic physics have obtained both qualitative characteristics -
. and approximate analytic solutions to many nonlinear problems by application

of various canonica‘l perturbation theories. Since the differential equations

 Hamiltonian system of differential equations (i.e. » there exists a function '

e
'BASIC ELEMENTS OF CANONICAL
" TRANSFORMATION THEORY

- . - M

1. 1. Introduction

_fn recent years considerable work hals been expended on the'pmb}cms of
trajectory analysis and guidance theory for coﬁtinuouslyﬂhrustinq space
vehicles. The main problem in these areas is the determinatién of ghe solu-
tion ¥d & vector two-point boundary value problem. Since the dsual problem
is highl} nonlinear most of the solutions have béen numerical. While the
numerical solutions are valuable, analytic sclutjons are needed for a complete

understanding of the problem. Hence, the need exists fdf approximate analytic

solutions to such mission oriented problems as interplanetary transfers,

. planetary éscape trajectories, etc. It is anticipated that the abundance of

available numerical solutions can be used as a guide in the determination of
the desired analytic solutjons.

Tk
~Based primarily on the work of Poincarel , Investigators in celestial

which describe the optimal trajectory problem can be represented as a

H(x, A, t) such that the equations x )4 LA = -2H ,fori=L .m0
‘ 8 STEn T ax T T T
are the differential equations which define the optimal motion of some phys“ik:'al_. 3

e

*Numbers refer to the listings in the Reference‘sect‘lon.

TR N




procebs).'zt is reasonable to assume‘that Hanulzonian ;\muurmtmn xlmmy may
f@ new dnalyuc In!oxmatmn for various classes of pmbhm,. |

In Part 6f this report, the basic theory of Hamiltonian systnﬁis r‘equimdk
in trajectory analysis and guidance theory is presented. The treatment will
proceed from the general concepts to the theory most used in applications.

- . The theory has largely been drawn from Wintner_z, Siegel Goldstein , Gelfand
and Fomins, and_Born6.

In Part 11, solutions to generalized Hamilton-Jacobi equations when thrust
is zero are obtained in both polar ar;d spherical coordinates. These solutions,
which can be used as closed-form solutions Ato_the im}érse square gravitational
field coast-arc problem, are then treated as base solutions for a canonical per-
turbation theory. In the planar case, the perturbation equations are developed
for a continuously.thrusting vehicle. .

Before turning to the discussion of the basic elexr;ént's of canonical
transformét’ion theory, a few remarks on the notation _used in the subsequent

developments are in order.

(1} Matrices which are not vectors will be denoted by capital Arabic letters,
e.qg, ., A, M, N, ], etc.

{2) The transpose of a matrix, say A, will be denoted by AT, _the inverse

by A7 O

kg

{3) Vectors wm be treated as nxl matrices (i.e.., as column vectors), e.g. .,

R e ]



{1} Let H{x,,....%x )} be a sca.ar function, Then, the gradiont of
1 g 'n ‘ : ,
with respect to the vector x will bo represented as a column vegLor,

i.e.,

rul

.2 Mathematical Preliminaries

In this section some basic concepts and theorems from algebra and
analysis needed in the subsequent discussion will be presented for easy

reference.

1.2A_ The Implicit Function Theorem

The ma jority of the transformations encountered in Hamiltonian systems
are nonlinear, so ‘it is necessary to know the poir;ts in ;he region of interest
at which the transformations are defined. Furthermore, since. implicit
functional forms will be encountered, frequent use will be made of the fol-

lowing well known theorem.

Implicit Function Theorem7: Let fi(xl' SRR yl 1reca¥ )

m
{t=1,...,n) be n functions such that there exists a point

(xc;. x;', e xZ. y?,j. [ y;), in the domain of the definition of the
‘ ) o o
fi' where fl(xl,...,xn, yl,...,y;) = 0 for each lnl....‘.n{

Further, assume that each of the . £, “are of class C‘(i. e.. the f

and their partial dei’ivatives with respect to eachroi their arguments are
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»,_fcqx;ti'nupubs‘)' and that " det{

" Theh,

P REURUE Y- N - SR b
WaxJ] 55 0 ‘at tht‘rvﬂpom‘t (Al e X yl(‘ Yeed 3, ;

=" {1} there exists in a neighborhood of the point (y?, S ym) a unique

system of continuous functions xi = @i(y«} FRS ',"Y,;,)(i =1,...,n)

.

e} . : o o,
which satisfies both x; = Qi(Y‘f, vy Ym)ﬁnd fi[ ¢(Yo), yl=0

(i=1,...,n); and
a@i .
{1i) the partial derivatives ‘a';" exist in some region, are continuous
functions Oﬂyl PP ym) in this region, and can be found by solving-

the equations:

n afi 2% afi’ T :
T 5‘; Z)—J + 5— = 0. (i=1,....m k=1,...,m}
i=1 9% 9% Yy :

1. 2B Firsi~Order Partial Differential Equations

This report is mainly concerned with one. partial differential equation,

i.e., the Hamilton-Jacobi equation

88 s, .
ot +‘H(X, ax ' t) ‘ 0.

Since the dependent variable § appears bnly as a' derivative in this equation,
the forthcoming analysis will likewise be concerned with ﬁrst-drder equaitigns
which contain thé dependent variable only through its derivatives. In the fol-
lovéing discussion, two methods for the solution of first-order partial differential
equations are presented: the separation of variables method and the methqd of

characteristics. Intimately related to these methods is the theory of Pfaffian

systems, which is also discussed. More comp]ete descriptioné of the methods

and theory can be found in Refereﬁées 3, 9. aﬁd 10.

Couside‘r a general first~order partial differential eduaiion 6f the form:

[P WV




. §§ T : K :
P aw - (i=0,1,2,...,n)
Then Equation (1) becomes

F(xo, Xpseees X0 P pl,....p)zo.. . k(‘z)_

n,

Definition 1. 2. 1: A differentiable function S*(xo, ceea X o @ eney am),

where the set - {al' RETL . } consists of ms<n + 1 independent parameters,

is called a solution of Equation (2) if

as* 68*) =

P(xo. R Y™
- 0 n

Definition 1. 2. 2: A solution

§* = S(xo, SRR RECIRERY an) +A |

of Equation (2) which depends on (n+1) independent parameters
2
{e,, -.-2a_, A} is called a complete solution if the matrix {_.3?__5._ 1.
1 n . axia a 5

with £=0,...,n; §=1,...,n hasrank n.

Since the dépenéent variable S er}teré Equation (2) only through its
derivativés, the additive constant A in the ai;ove 'deﬁnition has no effect
on Equal{ion {2). Therefore, thié constant will be neglected in further dis-_
b‘cussions and it will be said that a complete solution of Equation (2) depends

upbn n independent constants, i.e., the constants {a.l;' caes an}. o




écﬁarafion of Vvériablcs

' The method of separation of variables is most useful as an “inspection”

-method although necessary conditions for an equation to be scparable can be

developed (e.q., seerRe‘ference 11). The inspection properties wgll be dis~
cussed rather than the formal development of the necessary cohditions fof

separability since one usually employs the method of characteristics if a

separation of variables is not possible.

Suppose that, by inspection, Equation (2} can be writien in two parts_
so that one of the parts contains, at most, one of the independent variables,
say x,, and its associated partial derivative pj :

i

~
Fl(xj’ p}) -FZG{’: p) = 0,
where ¥ and P are n-vectors which do not contain xj and pj . Then,
~
Filxpop) = Folx p). (3)

Since Equation (3} must hold fér all values of (xo. Xpoeees xn) in the

domain of definition, assume that there exists a solution of Equation (2) of

the form: V
] e Sl(xj) *+ 8,(x). 7 S 5 ,f‘_(‘,n
88 (x.) Sow T o
Then, p, =28 —L L 5o p isafunctionof x, alone. Therefore,
i } ij 8xj } Ty 5T rerore.

with the assumed solution (4), Equation (3} becomes:




_arbitrary variation in any one of the variables (in particular, xj) does not

» afféct the other variables. Then,

Pl + fo’, plx, + 8x)) = F;&, p(%) )

This condition implies

F s p) = P _{x + ox, X, + 6x, = constant z A..
1("; pl) 1(] ] pj() J)) = By

Thus, the equation Fl(xj, pj) = A, can be used to solve for

1

. 88y
Pj = pj(xj, Al) = 5—%—

-1t then follows that
s =, S'pj(xj. Al)dxj + Sz(x) .

‘The same procédure may then be applicable to PZ’ i.e., there may

‘exist an. X, 7 xj such that

: 7 ‘ % 2 '
. ‘ F3(Xk’ pk) + F4(X. p) - Al = 0 »

In

) t ~
+ F4 s PZ and the (n- 1)-vectors X, P do not contain xj or X, .

fact, the procedure may Be applicable n times, ih which case the n con-

where ,P3

stants necessary for a complete solution of Equation (2) will then be defined
. and the determination of the solution is then simply a matter of integrating B

terms of the form

¥ - .
SR by g man)

‘.. But {xo, cenX ) constitutes a set of ‘n+) independent Oafiéblwr,;‘s'. soan-

e
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Thereby, theintegrat:on ofthe pamaldxffercntial eqlxali&\h reprcsenteu m
_“‘Echbxrx'étioﬁ (2) he;s been reduced ktofquadraturé.} Even if alljn consiants ibclm;'
'»kthe‘ complete solution cannot be ohtéined by ;eparationb of variablés, th§

’attempt Should be made to obtéin at least a baftial separa‘tion of varia)#les

and then apply the method of characteristics.

Method of Characteristics

Every first-order partial differential equation can be represented by
a system of ordinary differential equations which is called the characteristic
system for the partial differential equation.” The characteristic system for

Equation {(2) is

dx, aF
dr api
| dp : Y
—_ i _ _ -B-Ea_.,. - . .
d+ axi (i . 01-..,1’1) ] . (6)
s _p o
dr 120 Pidr ¢

Note that if one lets &, F, X, pi} = {t, H, X ki} in the above equations,

then the first two sets of equations become Hamilton's equations. Thus, in a

dynamical system, Hamilton's equations are the characteristics for the Hamilton~-

Jacobi equation. i

In solving Equation (2), the method of characteristics is used mbst

effectively in conjuction with the method of separation of variables. That is,
one first determines as many constants of the complete solution as possible by

separation of variables (i, e. , ‘a pértial separation of variébles), say

.

v oy g AR Lo oo g




Note that it is assumed, without loss of generality, that {xo. e s X

~until n constants are obtained

%’ Al Veee s A)' where k <n, “so then Equation (2) can Iigo written as

R . cerer A} = 0 . (7}

,_Fv" (?(k'," *¥at Py n’

k-1"

Pyeee- 'é?’k _1} have been eliminated from the partial differential equation

r by substitution of the constants {Al ‘. : Ak}. Equation {7} is then'a partial
differential equation in n-k+1 wvariables instead of n+1 wvariables, as is

.. Equation (2).

The characteristic system for Equatibn {7) is

9%, _ orx
d+ Bpi
dp :

i _ _oFx _ S
Tt ey GTRew @
dr (=K Pi dar '

where S* ;s defined by.the equation
Sp(x)dx +S*(x,...,x) (9)

Then only n -~k constant relationships must be found in the first two sets of

.

'Equations (8) in order to have the necessary number of constan’s for a co:nplete

“solution. If it is not possible to obtain the necessary n-k constant rela-

tionships from the characteristic system, then one should find asAmany as

“possible and then go back to the separation of vanables method and SO on

ey - ey v = -
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As will be shown later, one of the most »pdwer‘ful aspocts of the chz-‘:U’.:;:.'w-.

‘ Jacobi theory is that only  n constants of the motion must be found by mm’_:rufs:;:.;

whereas the solution of Ham;lton's equations requires 2n integrations. 'i‘hus; :
when the complete solution to the Hamilton-Jacobi equation has been determined,

the remaining n constants of the motion can be simply obtained by differentiation.

Pfaffian Systems

VIf> some of the constants for the complete solution of Equation (2) are
féund by application of the method of characteristics, it is likely that some of

the partial derivatives, . 83 . will be of the furctional form

o?)xi
88 _ 88 o
5 Bx (xp. xq,...,x),
- 88 ]
where 'a‘x‘ may or may not depend on x‘. Consider, for example, the
i o :

_ solution form of Equation (9). The total differ‘ential of S is

k-1 . ase
d8 = ¢ p(x)dx +2 ax | Kpr e e Xpldx . (10)

§j=0 ; jmkaxm‘k

_Thus, to determine the solution S, Equation {10) must be integrated. The

integration of the first summation of terms is straightforward, but the integra-
tion of the second summation of terms is not since the coefficients of the dxm

may be functions of other variables than xm. This iniegration problem has been

L lnvestigated in the literature and is \:sually called the Pfaffian problem.

—

Definj_ t_l.on_L, Z. i : The expression Z: G (x seee s X )dx is called a
- i=1
Pfafflan differential formin n variables, the difierennal equation

.l

R
: 2 G(X .....X)dx = 0
1=1 : -

- e S 8
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is éal_léd the Pfaff differcntial equation.

With respect to Equation (10) and the above definition, it.follows that S

a Pfaff differential equation of the following form must be integrated

. n
¥ - % cres = 0,
ds = Rm(xk, xn)dxm 0 {1
m=k
where R {x X ) = 5% In order to determine the generating function
m k'’ n '8xm' ¢ 9

) S. the solution to Equation {11) must be obtained. For cases where Equation

(11) depends on more than two independent variables (includiricj S%), there
does not exist a general integration theoryg. However, integrals can some-
times be found by inspection of the functional form of the equation. An
important example is the following: suppose Equation (11) contains a term of
the ,form Rm(%')dxm, where X does not contain ‘xm. Then ; S* must be-of

the form

B = ’ '” .
S* Bm(s‘f)xm + 8% .

This can be shown by contradiction, as follows. Assume X does not

appear linearly inf S* ., Then there exist two possibilities:

(1) xm does not appear explicitly in 8%, This case cannot be

true sin‘ce it would r_equire

—

(11} xm appears nonlinearly in S*. If this is the casey,t then o% .
. ] . - L3 ,v . : o . o i m B
~must contain x_ explicitly. But,

e s




L Bx m' o
so then R s also a function of xm. But, by' hypothesis, this s not trae,

Thus, 8% can contain xm only in the product form Rmxm.

1.2C Croups

As will be shown later, the class of canonical transformations can be

represented as a group. The definition and some simple properties of-a gyroup

will now be presented. For a more complete presentation, see References 12

and 13. ‘

Definition .2,4: Let G be a nonempty set and "." an operation defined

on G.. The set G 1is called a group with respect to_ ", " if

{i} for each a,beG, a.-beG; (closure)

' (ii) for each a,b;ce G, a*(b.c) = (a<b)-c; (associativity)
(iii) for eaqh aeG there exists eeG such thét
a‘-é = e.a = a; (identity)
(19)» for each a¢G there exists xe¢G :.such that
a-x = x.a = e. (inverse)
Properties of grougis

s (G 1} The ;dentity. e, ofagroup is uhigue.

i "{G. 2) For each ae¢G there exists a unigue inverse a-lc'G.

{(G.3) If a,b,ceG and:a-b=a-c, tnen b = c.

ﬂ (G 4) If vg,ﬂb,ceG and b-a =c-a, then b=ec.

e o VTN TR




{G.5) 1f a,beG, then there exist elements n,Aqt G such that

‘ asp = brz.i’nd q+a = b. In fact, P = a-l'b and'q’ = bea
(G.6) 1f a,bcG, then (a-b)"‘_= bl.a”h, |
Pefinition }, 2. 5: A nonempty subset K of a group G is caue’d a subgroup
of G if:
| (1) a,bek —>a-bekK:

(i1} aeKk ~—>» a-l € K,

1. 2D Symplectic Matrices

Before defining the symplectic matrix, the concept of the canonical
matrix (and its properties) must be introdﬁced.
. Definition 1, 2. 6: Let In = nxn didentity matrix and On'=' nxn zero matrix.

Then the 2nx2n  matrix

‘ n I n
R - T T T T
. n H n

is called the canonical matrix.

Properties of the Canonical Matrix
(C.1) 1P = -1, where 1 =1

2n”
.- Proof: By straightforward multiplication.

: (c 2) 7 is nonsingular, t.e., |J| # 0.
L Proof: By (C.1), ]2 = ~I, Then, since the determinant of a
- ‘product is the product of the determinants. “

R BT I RYSTe e

-l
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- Property 1.2.1: If M is symplectic, then M-L . exists.

Proof: By (C.1): J'I()z) = J”’(-n = -J—l. But, also:

A =gt

IS S S e}

Definition J. 2.7: Let M be a 2nx2n matrix. The matrix M {s said to

he symplectic if
T
M'JM = uJ,

where p -is a nonzero scalar constant.
(Note: Sie'gel2 and most other texts do not include the constant p in theii
definition of a symplectic matrix. However, the purposes of this report are
best Served by using the above definition. Alsd, Wintner1 uses the condi-
tion MIMT = uJ instead 'of the one given above. Bi;t, as Wintner shows
on pagé 26, the two co}nditionfs are equivalent. )

- Some impqrtant properties of symplectic rﬁatrices will now be présented.
In this development, M will be assumed to be a - 2nx2n matrix and J vwill

be the canonical matrix. & v

Proof: It must be shown that IM| # 0. By the-deflnit_iori of a symplectic

matrix:

Lf I M:IM[ - IMTl < 1l ::[Ml‘ " el

or,

l"’f"!,zln? ul1l

P -

s

comn e a4 e ey e 4 e
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%o then

B A A S i, P s s T S

bi Cuiner }MT‘ = A“\’”-'BUL in 7 .0‘-('»50

IFMIZ = B

-

M| = %4 # 0, since u is nonzero.

Property 1.2. 20 The inverse of a symplectic matrix M is given by

-1 1 ..T
M= -=IM).
”I J

Proof: YBy definition, MTIM = u] since _M is symplectic. Operate on

-1
this equation on the right with M , so

T -1
M = p]M .
Operate on the left with fl, S0
-1 ‘ T -1
I MJ = pgM .
-1 - ~1 ) N
But; I = "'Ir so: M = ‘;; ]M ]-

Now it will be shown that the class of symplectic matrices forms a

group. The closure property which is a result of this fact is very important

-in applications.

Property 1.2.3: Let § be the class of symplectic matrices of order 2nx2n.
Then, S is a group with respect to matrix multiplication. -

Broof: Since the product of two matrices of order 2nx2n isa 2nx2n

1’ MZ ¢« S that ther product Mle
is a symplectic matrix (i. e., to satisfy closure). Sincc both M,. Mz ¢S, .

matrix, one need only show that for each M

then M. : ; = : . - R
hen MiIMy = ;I and M,IM, = w,j. Solvingfor | Ylelds ] g.“z M IM,:




f ': ) 1 T X -

§ & o M { F'Z: 'MZIMZ ] Ml P'll
L LTy

. S M) MM ) = g

T -
(M,M,)" HM,M )= G )T

50 (Mle} is symplectic.
The associative property of a group is immediately satisfied since
matrix multiplication is associative in general.

The identity property is satisfied by M = I, i.e.,

ITII =] and MI=IM = M.

R

9 Finally, consider M-1 as the inverse for M (by Property I. 2. 1,

Mf‘l exists). Clearly MM-1 = M-IM = [, so0 one need only show that

Mles e, MY MY = ul. From matrix theory, if |M| # 0 ;
{ then (M H)T= D™, 0 .

VIS VL VN Y AL R '

But - M is symplectic, which implies

T

M) = Yy L g

S

Thus, (M HTm? = [ﬁ M mt =L vt -

also symplectic.




. 1.3 Canonical Transformations * -

5 et A e b e ¢ s

The main problem in trajectory analysis and guidance theory is the

integratipn of the equations of motion and the Euler—Lagrénge equations. One

v

‘can equivalently describe the given seconc_i-order system of ordinary differen-
‘tial equations by a system of first~order ordinary diffcrential equations in the
§ Hamiltonian form. Throughout this report, the following definition will be

used for a Hamiltonian system.

Definition 1. 3. 1: Let x and N be n—Vectors and t be-a scalar. The xi

will be called generalized coordinates and the A will be called generalized

momenta. If there exists a scalar differentiable function -H(x, \, t) such that:

Cans amr m e wen wem AR o

5 - e Y
’ i d0 7 3N, ‘
(i=1,...,n) (12)
3 A -dki _ _B8H 1
i Tdt T ax ;
g i i
!

are the differential equations-describing a given dynamical process, then

the set ‘{H; X, A\ } is called a Hamiltonian system. 8
{Note: Notationwise, unless stated otherwise, the variables {x,q, Q,B}
5 _ will represent generalized coordinates and {A, p, P, ¢} will represent gen-
eralizéd momenta. )

1. 3A The Definition and Necessary and Sufficient Condition

Moét optimal trajectory problems are not integrable in closed form, B i
- 8o the system of differential equations which define the problem are usually .. -

integrated numerically to obtain the solution.  However, there exist other

.

alternatives. Suppose 2n independent constants of the motion are known.




for 3’I€1uéti_c>ns (12).’ Then the problem is reduced to the splutioh of 2n
algebraic equatioris. " The fundamental objective.of canonical transformation’
theofy is to transform the given system of Hamilton's equations into another

system of Hamiltonian equa*ions which is readily integrable. In the partic-

OB PR, PO (RN ST R

ular cas@a of the Hamilton—]acobi transformation, the result is the equilibrium

solution {i.e., 2n constants of the motion).

2
Definition I. 3. 2: Let {x{g, p, t}, Mg, P, )} € C _be a transformation which

satisfies the conditions of the implicit function theorem. If for every H(x, X\, t) 3 *

there exists a scalar function K{q, p, t) such that

: 3K . ;
(i=1,...,n !

. 8K !

Py = " bq |

then the ‘ransformation is said to be canonical:*

Note that the word "every" is emphasized in th'e above definition.
The definition does not say that every transf'ormation which preéerves
Hamiltonian form is canoni'cal, but‘ only those which preserve Hamiltonian
form and are independent of the Hamiltonian function. Thus, if a transfor-
mation is canonical, it remains so for every choice of the Ham{ltonian.

By adopting the above definition for a canonical transformation, the

following necessary and suffi¢ient condition for a canonical transformation

can be determined. I R SR LT

Theorem I.3.1: Let {x(q, p, t),x(q, p, t)} be a transformation which

satisfies the conditions of the implicit function theorem, ahd let M be the '




Lioobsan matrix of the transformation, Then, {x(q, p, 1}, Ma, p, )} is

& canonical transformation if and only if M s symplectic.

?ﬁ"’iﬁi (:gggiigiengy«-) Consider the time derivatives of the set {%, )x}‘

. n. 9 3xi . ox
x, = T [ === a + 7= p ]+
] ] ot
i j = 9 i Py
) (i-—:ll
. n A, axi . axi
o= 2l a + - p )+
i 3 a ' ot
j=1 99 J P

9x, r. ox, 1
i t i
aq. ! ap.
M = -_’_....:..-.]..
o\, ! o\,
i X i
8 ap,
i B L'
S ' pu—
Then, in matrix form
% g :2.4
= M s |,
X P LY

ot

Since the given transformation satisfies the implicit function theorem, the

inverse transformation exists, i.e., {q{x,\, t), p(x, A, t))}. Thus,

. » §g

q X ' ot
=N + .

e . _32

P ’“ ot

e

.(11’3)




It will be shown now that N = M '. Substitution of Equation (14) into

Equation (13) gives

: . 8q ax
% x ot ot
= MN + M + .
3 ' ap. o
» A at at

This equation must hold for all Hamiltonian functions, in particular those

independent of time. Thus,

x 3
= MN + MN =1
A A
and
8x] 8q 8] Jex
at ot 8t 5 ot
= -M -> : = ’-M
al 8 o a
at| . at . i at
Since M-l exists (M is symplectic) and since MN = I, it follows that

-
’

N»= M_I. By Property 1. 2.2, N = M-.l = -‘& IMT]. Hence, Equation (14)

can be expressed as

e - . " e R R AT

o o T

:5},5
=
5
b

s




© e b A e 1

-

PP

T e

] .ot
= - = M +
p H N ap

q - 4 %
: Bt 1 2.7
I = -— JI'M7J
._E_E B ;\
P = Bt

- |

x A ,
But, T . = and J = -1 so
op

.5_3 A

¢ 1 T
TLM

-@ - 29 -x

s

Since {H, X%, A} is a Hamiltonian system

;; _ op 8H
at 1 r | ox

= - ; M .
o - 29 9H
(a ot ) ax

oo L Y X, My
i 8tu H j=1 8(;1 8xj {')qi axj
P PO R - T )
R | 9t P j;l iip1 ax ap1 a

Define the function

as)

Cpe
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it 1w 5

=3

K(q: P. t) ] ; H[ X(q: P. t)l )‘(qn P, t)l t] .{. R((}, pl t)t (’?.!

where'!i' and R are called the multiplier and the remainder function of the

canonical transformation, respectively. Then,

tex L Yoen P am By R
Y Il ok 2a. *on 3. Y oq
i My=1 9%y My oY 9
(18)
8K 1 n aH. ax! aH axj 9R
5_); = R z 1 ox, 9p * ] ap 1+ 5_};
- i =1 J i i i i
Substitution of Equations (18} into Equations (16) gives
Soe Lok R
i ot aqi aqi
(19)
ook _om
i at a;:t1 api
In the definition of K, given by Equation (17), the term i—H “is well-
defined,but R is.not. Thus, for K to be a Hamiltonian function in the
{q. p}-space, it must be shown that there exists a function R{q, p, t)
which satisfies the equations
ERL/T BT T Ry
S8t aq St op, ' LA
For then Equations t(19‘) become .
= . R ) 4 . o
Py 9q, — , ’
T ) : . (1 ='),nvun t‘n) : .
- qt = ap . 2 S
which is a Hamutoniah;system in the {q,p}-space.

e

B cosni i o Kl e s R




’l‘hus,’l to complete the sufficiency proof, it must be shown that therc

exists a solution R(q, p, t) to Equations {20} (note that the solution need.

not be unique). In matrix form, Equations (20) .can be written as

r-aR - m— »-.8-2-1
8p ot ot
= = I
8R _9p ilo8
oq ot ot
- o - - -b
or
~§_&- ,.-a—q..
oq ot
- = J’ .
3R op
op at
- ) b ol

Note that the left-hand side of this equation.is a gradient. Thus, a solution

of Equations (20) exists if the vector

is a gradient. Since (x(q, p. t}), Mg, p, t)} is assumed’to be of clasé

8q aq ap 8p S

2 . 1 n 1 : v .

C thenthefunctions {_at LR YSIr YR RET R v } are of class
Cl. Thus, the functions . {.—“aR raee s R ' "‘aR- PP 8R } must be of class CI
aq] 3qn 8Pl EPn , e

and therefore the following relations must be true




B o L S e e N S

R ERE S
o%p _ _ _a%g o’r _  _o%p A o)
8q.0q,  9q0q, ° ap, 8g. 7 3 - ) -
iiqi«fij «qu 4, _aqi P 89, “’s_ ?pi Py apj Py
To easc the notation, let the two sets of variables.be denoted by
s v 0 El 2 v e ey ’ )\ s ¢« v g
X ' Xon? (%) *af 1 Al
(22)

(Qll-oolen}E {qlg..-;qn: pll...,pn} .. ‘w
and let
X = ¢(Q,t) 3.
£
Q = X, 1) P
represbent the given transformation and its inverse, respectively. Then, in
.summary: since [ g% is a gradient of class Cl, Equations (21) must be

.satisfied. Thus, if there exists a solution R(Q) of Equations (20), then

I ’3‘%] must be a gradient of class Cl, which implies that a—% ol %] }is
a symnetric matrix. It will be shown that this is indeed the case.
By expanding each side of the following equality it is readily
determined that
% oy Taa [5:! SR 5,‘;,23)

Another convenient representation is given by the following lemma.
Lemma 1: ‘a%[g'%] = g{j N}, where N is the Jacobian of the inverse

transformation.

i S+ A Ty ¥ TR 7 By TR G W IR v o
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Frogf: Consider the inverse transformation Q= @{X, 1j. Then,

o

cak | awfe@Quu.t] 0 8 el u, 1]
8X X 8t 8t

]

i.e., after the differentiations are performed the relation X = o (Q, t) i1y

used to form a fuaction of {Q, t} again, Since (X, t) ¢ CZ, it follows
by the chain rule that
8 ¢ 2y 9 oy 8 8y, 8y
—— = - = e 4
] [BX] X[Bt] aQ[at} oX (Z);

since. ’g&t’- is a functionof {Q, t}. But, N = g% . so.upon substitution

in Equation (24), the following expression is chtained

8N _ 8 (ay
5t = 20 Lat] V-
Then, since N-1 exists,
B 8b, . 8N -1
30 Lat) 3t N - | (@3

The representations of Equation (23) and Lemma 1 then give

B gy, L g BN ol
‘8Q{I[8t‘]‘}‘lat N,

N . -1

Thus, tl’?e problem is now to show that J. B_t-' N is symmetric, l.e.; e
v . gﬂ‘ =147 _ m. -1 S R

‘Since by hypothesis M 1is symplectic, it follows that N is

1

symplecﬂc since N = M ' and the symplectic' matrices form a: qroup.'

e
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‘I‘ﬁus. erl\‘ = 3’: ). Since ':: ] is just a matrix of constants, it follows

e

that
= Aol -
(NN =05 3] =0
oan. T
T, 8N _
. T
Since ] is skew-symmetric, ] = -] so 3
) :
T 8N _-
-(8t)IN+NJat—0.

Upon multiplication by N-l first ‘on the right and then (NT) ! on the

left leads to the following expression

-1, T 8N, T T aN ..-1

3 NG T s T N =
Therefore,
S ; at ot -
which veriﬁes the symmetry of I aN , and thus, -there exists a
solution R(q, p, t). of Equations {20). ,___.._ S e e LR T

- (Negessity ») Since {x{q, p, t}. Mg, p, t}} is assumed to be

‘, canonical. there exists'a K(q, p, t) such that (q' = %ﬁ' - 5&}.

It must be Shown that M is symplectic (or, equivalently, that N s ,

. p =




e S oat

symplectic since N = M} tmplics that M. is symplectic 1f N o4s
symplectic), Making use of the notation introduced 1n Equations (223,

Equations (14) can be written as

. - _1 . gg R
Q M "X + YR {z:
where
q X
Q = X =
P A

But, ({H, x, \} = {H, X} is a Hamiltonian system so

o] [ on |
) W 9x
. _ - 8H
x = = ] I[ ax]'
_2H 8H
ax | _ax

Substitution in Equation (27) gives

- = -1 g.lj & 2
¢ =mgdy . B L e

But, H(X, t) = H{ X(Q. t), t] which implies (upon application of the
chain :ule‘) that o ;f e

2H . (2%,Ten _ \ToH
Q ~ '8Q’' X X

Substitution in Equation (28) gives




[

Fais

It is given that {K, q, p} 2
< U8R .
Q = IaQ which imph‘es
: -1 .
8K _ -1 T 8H | 2Q S .
Jag = M M) oo+ ooy (29}
Recalling that I—l = -] (Property C. 3},
3K - a1 1.7 en 3Q
56= -M I(M) 55 - ]at .
or
8K _ T 2H . 20
2Q JNIN 20 Iat P
. S -1 -1 T
where use has been made of the matrix identity (M") = (M ).
Then-
) QURIRPINIC ) SO 305,
30 Il NJN %0 +,at]' (30}

The left-hand side of Equation {30) is a gra‘dient. It will now be shown
that the right-hand side of Equation (30} is a gradient (for every Hamiltonian
H)only if N is a symplectic matrix.

Since Equation {30} must hold for every H-function, in paxiicular it

must hold for H = 0. Then.,

%K _ ;20
aQ ot




R R Lo

Lt

T—( A

that JNIN

- Lemma can be stated.

’ Lemma 2: If ININT % is a gradient for even;,choice of H, then

ININT = pl, where B = constant (# 0),

Proof: Let A = ININT. Then A% is a gradient. TFirst, consider the

2n classes of Hamiltonian functions which are polynomials in only one

Qie {Q1 PR QZn}' Then, the following vecturs are gradients:

- - u ‘ -
a,, 9,@Q) Fallz 9,(Q,) a 9. (Q. )

a1 99 3,2 99

L] .
. ’ . [ L 4 .

an,1 9@y 3,2 92197 %n,2n 92n{920)
» .. | i | on _
where
al‘l 31‘2 se e al,Zn
az'l az’z PP aZ,Zn
A = . . o
®2n,1 ®2n,2°"° %z2n,2n
S eH@)
- N gi(Qi) = aQ . (i = ln LY Zn)

© A
f

J ;.;hx'ch im_;ﬁlie's that —}‘3‘%, is a gradient with respect to Q. "It then follows

aQ) must be a gradient. On observing this fact, the following

(31)




functions BI(Q)' e an(Q) such that:

8Q, 1,4

oy a
i ?an_i 2n,i

e

‘Given a particular ief{l,2,...,2n},

"S‘incev each of the vectors of unations {31)is a gradiénf, there exist  2n A'

o
}

gi(Qi)
. (i=1,..,.,2n) (32)

gi(Qi)

Equation (32) can be viewed as an

integrable system of first-order partial differential equations with dependent

variable Bi' Thus, the integrability conditions must be satisfied (i.e.,

2 2
LEE- _ ] Bi
anan 8Qk8Qj
-8—‘ L
8Q ..
1 a 9.{Q,)
2n,i i i
— H J

be a symmetric matrix., Thus,

B )

a, .9
“1.k’k

%

foreach 1, §, k = 1,2, cees 2n. ‘Considerthe case 1 =k # §:

). This is equivalent to the requirement that

i = 1,....2n0)

aQl . .

B . S 1 S S
0Q, k" "L,k 8Q; ~ Q, % J.k 8Q

P




S

But, g, dependsononly Q andsince i =k, | Ak

da - Ba » 8g, .
Kk = —_jf_)s.. : —k S
an gk + 0 an gk + aj,k an. {33)

Subpbse H(Qk) is 'a first~degree polynomial in Qk‘ Then,

8g,
5H k

=z == = — 0‘
gk an constant - an

Since Equation (33} must hold for all choices. of H, it follovgs that

3’3&1& g, = aal.k g
anA k an k

or,
(8ak X ) aaj,k o = o
an 8Q, k :

Since g # 0 in general, then

8ak,k _ liauL X
% %y

. U#K G

Substitution of Equation (34) into Equation (33) then shows that

: k=0 UFERK Lo eiss
8, S R T T R
since 7== # 0, in general. TR TR RS ISR
Q, .

From Equation (35) it follows that A must be a diagonal matrix,

and then Equation (34) becomes

-~ -—e

P ) . . v o

PR




o . fa

k. ) . ’ —
—dll e o
30 o, (j ¥ k) v
j .
wh.ch lmplies either ak,k = ak,k(Qk) or ak,k = constant.

Finally, consider the class of Hamiltonian functions H = QiQ

{i =1,...,%n-1). Then the following vectors are gradients:

ay 1Q) Q,

aZ,Z(QZ) Q,

. - -

0 a, 3(Q3) QZ
: 0
0 0

b = s —

a?n-l,Zn-l(Q2n~1
a-Zn, Zn(QZn) QZn -1

o

) Q

Again Equations (33) must be satisfied, so operating on Equations {36)

olay @9, 3la, ,@,00]
%Q, 8Q,

8la, ,Q,)0,1  ala, 4(Q,)Q,]
9Q, 80,

ala,  1.20-119,-1)9,,]

8[ aén, Zn(QZ )Q

n _“2n=-1-°

|

I

f"an

These conditions imply that

Pan-s

i+1

2n

(36)




,az,z(Qz) a3'3(Q3)
Bn-1,2n-12n-1" = 325,20,
Thus, al;l(Ql), = aZ,Z(QZ) = ,,., = aZn,Zn(QZn)' But the set

{Ql ' Qz, cees QZn } is independent, so each of the diagonal elements

must be the same nonzero constant, i.e. ,

a = g ==

= = ko= at.
1,1 2,2 T 8%n,an =k constant

Thus, from the above lemma

N = e,

.-or

NINT = g*l-l = ~p¥J = pJ

Therefore, N is symplectic and the theorem is proved.

Thé above theorem not only gives the important necessary and‘
sufﬁCieAt cordition for a canonical transformat?on, but also a method
for constructing the new Hémil,tonian if one has a transformation defined by
a symplectic Iac‘obian. I‘\Iptevtr'xat the définition of a new Hamﬂténian is no
problgm if the transformation does not contain time explicitly since then

R =0, Td this end, the. following proposition is considered.

[ s
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Proposition; Let {H(x, A, t}, X0 cels X 0 )\.lv, ‘o ,)\n} be a Hamiltonian

system. Then,

{H*(Xa)\)pxl:--.,x /)\ "".'

n+l! 1 xni-l}

with H* = H + )‘n+l and xn+l = 1 is an equivalent Hamiltonian system
which does not contain time explicitly, but has (n+1)~degrees of freedom with
H*(x, X} - as a constant of the motion.

Proof: For i =1,...,n, no change occurs, i.e,,

G = JQHE _ _BH . . _gHx _ oW
i 8xi 8x‘1 i axi 6)\i
Now, consider the )‘n+l equation:
A = 8HX _ _8H  _ eH
n+l ', aan amel : ot
But,
GH . o (M Uy,
dt i=1 é)xi i axi i 8t
or,
) n :
odH oxoetn kg dH _2H
o T E U R A G =
Thus,
: = .8H _ _dH
n+l . at dt

——

PN o X - g g et L
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oA,
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o,

d

x4+ H =0
dt ( ntl H)
Therefore, H* = H + )‘n+l is a constant of the motion.
Finally, consider the }':ni-l equation:
. gH*
= T = : = t \
xn 1 ~ 1 -+ xth ! + constan
n+l
‘Let xn+l =0 when t = 0. Then, Xn+1 = ¢, as desired.

Thus, the two systems represent thg same physical problem except that
with the new system only transforrﬁationé betwée;"'conservative" systems
need be considered.

Some expositions on canonical transformat'ions do not make méntion of
the above necessary and sufficient condition, but instead say that a trans-

formation is canonical if Hamiltonian form is preserved and that this is true

if there exists a function F such that

noo. nooo. ‘ - ar
iil Xixi - H{x, A\, t) = ifl piqi - Klq. p. t) + dt

Presently, the motivation for this relation {which, physically, is a form of
Hamilton's principle) will be shown. First, though, a simple example will
show why the word “every" is emphasized in the definition of a canonical

transformation adopted in this report (i.e., Definition I.3. 2).

Example: Consider the iollowing transformation o
. "1 .—-_» pZ - )‘l = ql
2T P Ay 9 .

et R T SR g - * g e b ~
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'l‘he ]&cobian for this transformation is

0 0!o- 1
o o041 o
M = 1 0.0 o '
o 140 o
and, hence,
—oo:o—x— [0 0 ' 1 o]
T 0 0t-1 0 00:01
MM = --—-—:--—— Fop = mmd e .
01'00 <1 oo o
]
|1 01 0 0] 01 0 0

Therefore, M is not symplectic. So, by definition, this transformation

is not canonical. However, if the Hamiltonian is,
H{x, )\, t) = X %,

then, V
K(Ql p,t) = "Plpz

is a new Hamiltonian which satisfies the requirements that the Hamiltonian

form be preserved. That is: -
.o o o
Xy T, =0 P, =0 Py “aq - °
* lH . A . F—QE_ -
X2, =0 Py =0 2 %o, =0
2 2
, -+ -
- -9H . e . g‘& o o :
My T 9 =7 G T TR
R , < L o ek
e I T ) 92 “ep, T Pt
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However, if H = xl,

K(q, p, t) which preserves Hamiltonian {orm under the given transformation,

then there does npot exist a none Humiltonfan

I 3B Generating Functions

Theorem I, 3.1 vields a means for checking a given trans{ormation
to see if it is a canonical transformation, Howcver, the theorem does not
give a method for developing the transformation. The.forthCOming discussion
will present wethods which can be used for such a purpose, _

Consider a Lagrange problem in the calculus of variations where the

integral to be minimized is

tf .
1= S Lix, x, t)dt .
tO

The function L(x, x , t} is referred to as a Lagrangian function and the
equations (Euler-Lagrange equations):
d 3L
dt " ox

-.g-}: =0 ‘(i=>‘l,....,n)
i N a T

_ must be satisfied on an extremal, The following question is ihen raised:

1f L'({X, ).(, t) is the Lagrangian in the X-space where X = X(x), what
is the relation between L(x, ;c, t) and L'(X, ).(. t) if they are the
Lagrangianv functions for the same physical process? The next theorem
answers this question. ‘ |
Theorem [, 3. 2: Let X = );(x) be a nonsingular transformatior and let

.

L{x, x, t} and L'(X, X, t) be Lagrangian functions in their respecttve

coordinat_e systems. If L and L' differ at most by the total time. - :



L

A

;:§' :
derivative of some scalar function {say 8), then L and L' will be
Lagrangians {or the same extremals.

Proof: By hypothesis, L = L' ¢ éj‘f Since both L and L' are
Lagrangians, then
Y Y
5 5Ldt=0, 65L'dt=0.
t t ‘
j (] ]
Consider the problem defined by L. The extremals for this problem are
determined by the solution of the set of Lagrange's equations for L, {. e. .,
d 8L, _aL _ - :
dt (a—;i) ox, 0. (i=1,. .-‘,'n) (38)

1f it can be shown that the extremals for the problem defined by L' are

described by the differential equations {38), then the proof of the theorem is

complete. Consid‘er:

» t t '
£ £ gs;
, 6SL'dt=5S (L-d)dt=6 SLdt-s Sds=o.
t t 5,

8 o ° o
But, & SdS = §f S -S ] =8 constant] = 0, so the extremals for

the L‘-problem are described .by the differential equations which result irom

3 S fLat = 0 (1. e. . Equations (38)).

° “In strict analogy with classical mechanics, the deﬁmuon

H(,x, Aot) s T Ax, = Lix, X, 1),
‘ 1=1 '

[T

A Bhimsibe, ——,

where A, 8L/ax 4+ 18 the Hamutoman a«soclated with the Lagmngian L, e

e

Thus the iollowlng corollary to the above theorem can be ‘obtained.
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i=1 n . .
variables of the 4n variables {x,\, q, p}L Then, ds® T (x.q +x9,),
dt o, it
" 80 from Equation (39): '
n - n n . ,
EAx -H= Zpq, ~K+ £gqx + ZXxq.
x-xA“ 1*1“ ‘.111 ,1=11i

-

Corollary 1, 3.1t Let L{x, )':, t) and L'{q. ci". 1} be Lagtangtans for

tho same problem {n two different coordinate systoms connected by tue

al, 8l

e &

nonsingular transf{ormation q = q{x). Deﬁng 1\1 H Mz' px L] Bq;

{i = 1,...,n) asthe gereralized momenta in thre two coordinate systems,

Then,
n .. | B . dé*
) "1"1 - Hx. M= £ pa, - K(a, p, t) +a';—. . (39)
i=1 i=1

n ..
where K £ & plqi -~ L' and S* is some scalar function. :
i=

' Equation (39) represents a sufficient condition for a canonical
transformation and is sometimes used as the definition for a canonical
transformation since it is very useful in applications.. The usefulness
of Equation {39) is a consequence of the function §%, which is called
a generating function, That is, if S* is given as a functionof n of i
the (x, M}-set and n of the {q, p -Set,_ none of which are conjugate
pairs, then a canonical transformation is defined.

n .
Example: Consider 8% = ¢ x4, and let {x, q} bethe 2n {ndependent

Thus, from the independence of the set {x, q, t}, it follows tﬂat

a4 = A Py =Xy (= Lo n)

K. p) = HI x(@, pl Ma. p]. TR




This canonical transformation {s ceued the reversal transformation since =
: ' ‘ \_
it takes the old momenta into the new coordinatles and the old cooidinates

info the negative of the new momenta,
In some expositions on the subject of canonical transformations, it

-is sometimes implied that there exist only four types of generating functions:

5¥{x, 9, t), S*(x, p., t), S*(A,q,t), S¥(\, p, t). Actually the class of
generating functions is much larger and the following property is useful in

applications.

Proposition; Let zie{xi, xi} and Zi'e {qi' pi} foreach i = 1,2,...,n.
That is, neither two of the old nor two of the new variables can be conjugate

to each other., The problem is to find the conditions which define a generat-

ing function §( z.l sese s zn, Z e, Zn' t). Note that the four cases men-

1

tioned above are special cases of this procedure. The conditions which

define the transformation associated with S(z, Z, t) are determined by

Equation (39) and the following generating function:

. . n n
% = -
8% = S(z,%Z,t) + 1 Elxiki( ziAXi) . ilqipi( VziApi) (40)

where it is convenient to define the operator aAb as follows:

Use of the operator is 111u‘stra‘ted>in the following example.

Example: Assume that

PR 1)\ seev ¢ -' sees . YY) ’
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are 't‘o"'bektreated as ih’e 2ntl indepéndent variables of thé‘ set

{x, X, q, p, th By the above proposition:

n n/2

K = ‘ ' N -
S S(z 2, )+ ¥ = XN\ - qp .
=84y ! =1
z L
Then, by Equation (39):
n n n/2 . n
¥ Ax, -H= 3 pd. ~K+ ¥ 25 ¢+ ¢ 28 3
j=1 * 1! j=1 + 1 1=19% 1 =2y
n/2 as - n as - 5 n . .
+ % 3 pi + = °a"' qi + 5—;(- + T (x.)\_+x,)\i)
i=1 % i=(n/2)+1 %% i=(n/2)+1 E
nz .,
- =z (qipi+qipi).
i=1
After cancellation:
g CH- B i eksR B, n ;g
g=1 11 1=24y 11 g=1 % Dy,
2 2
+n;:/2——s-b+; Q—S-ci:r-a-s-+; xi'-ngqu;
a=1 OPh SRy, B B R

. This expression finally reduces to

n/2 »
- _88 ¢ _8s - ~17.88
C B Ty %y H ey -y )py )+ (R-H -
p=yc 1% ,‘ Py 1T ot
S 8s | - - 88 .3
+1§£” [-tptaq Yy = (x4 nl =0
=3 i i .

pre——
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4 “ ¥ i ’ 3 A £ I";l + l;--l ’ . " ‘ }
i s Thén. since {x,, X2t Py P/2* 9n/241 a, ?\n/Z' veed ot

~ is an independent set, the following conditions must hold:

§§. as

: n
q =8 (4 =
i

1,...,'2—)'

p, = = X, = == (i ="21+1,.,.,n)
{42}

K =

Therefore, given any function which depends on the above mentioned inde~

1 pendent variables, a canonical transformation is defined by Equations (42).
% In‘akpplications use is frequently made of "si_mple" transformations,
R i.e., some c;f the momenta are switched to coordinates (and vice versa)

3 NwhilAe the rexhaining variables remain the same. Another simple property

k- ) .

©3 is applicable.

; Proposition: Let p, ¢ {%, Xi} foreach i =1,.. .:. n. That is, each of

the new momenta will be either an old coordinate or an old momenta. - Then,

n
§= 3 {xp(xap) (43)

P S W - %a,(x;8p; B

defines the simple transformation.

Example: Consider the idehtity transféxfmation, i.e., P = Xi for

each i. Then,

' Ty ™ o

g € 0

13
13
¢

R



Since this generating function depends on {x, p}, the previous

proposition is used to determine the conditions governing the transformation,

i.e.,
- co n n
= - A
5% S(X.p) + T xlhi(xibki) ‘:“ qipi(pj pi)
1= i=1
or,
n
8% = 3{x,p} - © qp; .
. i: 1

Thus, Equation (39) becomes

n n :
- . 88 « 98 - _ o
T AX H= E pP.g K+ ¢ (ax.xi+8p P, ~q,p; piqi).

1 1=1 % p

On collecting the coefficients of like terms this reduces to
n

T {(X
i=1

_8s

as, - =
7o, )P} + (K-H) = 0.

)x 4 (qi_api. i

. -

Thus, the transformation is defined by the following relations.

: M7 g—*x LU =%§; Y £
where
n:
L EnEe

"“he previous section was concerned with the procedure forb.

perform‘ingka ‘canonical transformation when a g‘eneratlng function is given. =

-

o A




E

didaen

R

. - Wi@‘ﬁ%% -
- B L

In this scclion atter;tion will be givenA to the proc¢ss of dcié?mining the
generating function. Once the generating-func;}ion is known, the canonical
ytransfor'mation can be performed immediately.

Let {H, x, A} bea given ‘Hamiltoni;an' system. If a canonical
transformation to a new Hamiltonian system where K = 0 can be effected,

then the integration problem will be trivial, i.e.,

- 9K -
= == = = =
q1 8p§ | qi constant {31 |
. g 144)
b, = -BK =0 7 = constant = «
Py 8q Py i°

The Hamilton-Jacobi theory has a's its fundamental objective, the definition
of this particular canonical transformation.
Let {x, p, t} be the subset of 2n+1 independent variables of

the set of 4n+1 -variables {x, A\, q, p, t}. From Equation (40):

N
- 9

8% = §(x, p, 1)
Lo 1=1

i1

Substitution of S* in Equation (39) gives:

n : n ds n .
Exx -H= % pq.-K+7T- - £ qp, - £ pa
jo 4t R & T 1 T i
or, . VT - - IR . '..‘_.7}”";',"’?~
‘n n n
. as as - as .
'S - = - = =2 2 .
Z M T HT R R G XiTap Pi) ar 7 T 9Py
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- FThen, since the set {x, p, t} is independent

A, = 92

% i ax‘

%

‘ s ) » .
) q1 op (i =1,....,n) {45}
: i

: K = H+ 2,

at

Thus, for the important special case when X z 0, the third of Equations (45)

yields the Hamilton~Jacobi equation (H-] equation):

as as

% H(x, 5y t) + 5t = »0”:” (46).
where the first set of Equations (45) has been used to replace xi by 'Z%
i

in the Hamiltonian. The H-J] equation is a 'ﬁrst—-order partial differential
equation which is to be solved for the generating function S(=x, e, t), where
a, = P, in the {KXz o0, qiE pi, piE ai} -system, As:-shown in the following

important theorem, if a complete solution o.the H-J] equetion can be de-

termined, then a general solution to the original dyhamical problem will be

i Ganiliiatas

obtained.

Theorem 1. 3. 3 {Jacobi's Theorem): Let 8(x, a, t) bea complete solution

of the H-] equationand {f} be asetof n arbit‘raty'constants, where.

; ] . !
_ B.. = 88 .« Then, the functions SRR
e SR P o s N
! X T xle ft) (1=1,....n)
i AT _8sixte, B, 1), a, tT
M T M(le Bt > ' e

1 .
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|

constitute a general solutitey the original Hamiltow's equations, f.e. ,

b
VR i) § y = 88 (=
X, = o, N ox, ° (= Tieeim)

Proof: Recall that the H-] equation can be used to define a genurating
function, S, for a canonical transformation from {H, x,\} to {K:0,

g=p, pza} where S {s assumed to be dependent upon {x, p, t}. Thus,

the transformation is governed by Equations (45), i.e., '
\ = 88

B, = o (i=1,...,n)
D= 8s

Since S is a éomplete solution, it is a function of 2n independent

parameters {al, cone an}, ‘80 the systein

as

.
1
]

' ox, M(x,a, 1)
4=1,....n)
_ 88 _ A :
PL ™ o, = Bylxoerd)

represents 2n functions of the 2n+1 variables {x, ¢, t}) I_‘ux‘thef,'
83s
axiaczj

_since S is a complete solution, it follows that | | # 0. This

allows the pi-equations to be solved for the xi's, f.e., % ‘= x‘(a +Bet)

Then,

e P - » . o - e



X
|

xi(a, B, t}

(i =1,...,n)

>
[

NI x(a, ﬁ.ﬂ t), a, t]

represent a general solution of the original Hamilton's equations.

In summary then, three equivalent formulations for the optimal
trajectory problem have been presented : (i) a setof n sccondforder
ordinary differential equations (Lagrange's equations); (;i) .a.set of ,2"
first-order ordinary differential equations (Hamilton's equations); and
(iii) a single first-order partial differential equation (H-J equation). In most
insiéncésf a system of ordinary differential equations is preferable to a
partial differential equation. However, in an analitic analy,si.s of the optimal
) trajectory ;;roblem this is not necessarily the caAse because of the elegant per-
turbation theories associated with the H-J equation. Before discussing
Hamilton-Jacobi perturbation theory, anoth_ér form of the H-] equation (use-
fui in consérvative systems) will be given.

Suppose fhat ‘ {H(x, ), x, \} is fhe given Hamiltonian system, i.e..

H does not contain t explicitly, Theh, H is a constant of the motion:

FUNESU n
dH _ 8H 8H 1, o e ey o=
at = 2 g Xt M) T B (R XD R 0

—
be
©
by

In this case it is sometimes advantageous to consider only generating

functions which do not depend on time. Then from Equations (45)

3

A = 88 (x, p) \ oo
M7 Tex UL T e

2y
U e

R
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Instead of setting K ¥ 0, let the new Hamiltonian be any spedihied

function of the new momenta, i.e., K = K(p). 8Since K is a Hamiltonian

oL TR
pl 8q 0
i
q. = BK
i ?p1

Thus px = constanyt =a {I1=1,...,n) and so

i
g = Al _ e
i op,
. i R
? Hence, once again the integration problem is trivial and the last of Equations
(47) becomes
Hix, 22) = K(a) . (48)
ox
A special case of this equation is
88, _
I’I_(X; ax) = al ] (49)

Awhich_Bomﬁ‘ calls the Hamilton~Jacobi equation.

4 si amiltonian Perturbation Theor
A§ it stands, the Hamilton~-Jacobi theory is eiegant but it does not
solve many problems slnqe it in-volves the integration of a partial differential
equation. Thus, on the surface, it appears‘th'at little is gained by converting

the orlgmdl characteristic system {i.-e., .Hamilton's equations) into a pmuél
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diffcremial cquation (i, e., the H} equaum_x).' Hlowaver, 1n m_-!r 11l
mechanics approximate solutions to many nonlinear problems have beon
obtained by the application of perturbation theories based on the 11-]
cquation. In the theory which follows, no small-parameter assumptions
are made., If a small-paramete: is present, use can be made of special
techniques for such problems (e.g., von Zeipel's methodls, Poincare's
small fparameter expansion methodlb) but they will not be presented hcre.

Instead of developing canqnical perturbation theory and tamilton=~
Jacobi perturbation theory seperately, théy will be derived togcther since
the derivations are essentially the same. Moreover, when these techniques
are applied, it may be advantageous to use a combination of the two. The
basic idea Ain both procedures is to make the integration problem trivial by
performing a sequence of transformations which converge to “natural™ vari-
ables for the problem (e g. , a set of canonic constants).

Lzt {H(x,\, t), x, A} be a Hamiltonian system. Suppose that

n
.H=H - © Hil
) i=1 .

where a complete solution of the H-J equation for Ho is known. In

practice, the finite sum is sometimes replaced by an infinite sum {(e.g. , &

power series or Fourier expansion for H-Ho) but the procedure is the same

as for a finite sum.

. Since the H-J theory assumes the set {x, p. t} 1is the independent

set, the general equations for a canonical transformation are Equations (45),

-

i.e..




Thus, the result 15 a new Hamiltonlan system (K, o, ).

i o g ek R
33
X, = 37
H ﬂxl @
?§‘ 1
qi 8pt (i = 1},...,.n) {50}
no .
25 _ 38 N
K at+H_‘at+Ho) z’_:!i‘.
i=1
Let s° {x, a, t} be a complete solution of the H-] equation for H_:
0 (o}
88 83 -
ot T HO(X. ax t}) =0, (51)
‘and let the system
0 o .
,xi xi {a, B, V)
(i=1,...,n)
o _ ,0 -
A = (e pon
be the general solution of Hamilton's equations for Ho' where the set
'( a, B} is the set of canonic constants determined by the solution of
Equation (51'). From the last of Equations (50)
. n
K = 0 - z H1¢
,ﬂ:'
S n o . : R
K(a,p,t) = ~T Hl[x (e,B,t), A (a,B,t), t] {52)
o i1=1 ,
and ) ' Lz ‘
Pra, 1T Tap (1= 1oeeeanlon s (530

SO 1
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“There are two basic ways of attacking the “new” Hamiltonlan

’problem deftned by Lquations (52) and (53). Canonical perturbation theory

involves the integration of Equations {53) whereas H~J perturbation theory
involves the integration of the H~J] equation for the Hamiltonian K.
Define K (a, B, t) = - [ x°(a, B, t},2%(a, B, t), t]. Then,
. i
K=K - ¢ H‘.
° =2
Consider the H-J equation for Ko:

1 1

as
+ K (B

2B t) = 0, (54)

Let Sl {a, B, t) bea complete solution of Equation (54).- Applying the

general canonical transformation Equations (50) again leads to the following

' expressions.
|
a = 85 ,,
! api ~;‘
1 P
aS
. bi = %a (i=1,...,n)
i
, 1 1 n n
8s 8s .
ko= = ) - - e
KE= et tERT Gy K- B OH = CE N

1=2 i=2
, : .

The set {a, bl is a set of canonic constants for the problem defined by

Ho - Hl . and from Jacobi's theorem, the set of equations

L ’ ‘t L l;v"v"ﬂn,
‘0‘ e al(a. b, t) . ’

e S

I W TR O g
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represents a general solution of the Hamilton's 2quanions (53, I

Ho - Hl‘ is a valid approximation to the total Hamiltonian }1, then

the system

H

'xil(a,_b, t) = xo[a(a, b, t), B{a, b, t}), t]

1

)\il(a, b, t) =2%[a(a, b, t), Bla, b, 1), t]

should be a valid approximation to the general solution of the Hamilton's

equations for the total Hamiltonian.
' n
% i 1f the effects of T Hi are required, the same procedure can
; ‘ . {=2 .
be applied to Hz, H3, etc. One of the most powerful aspects of a

3 Hamiltonian perturbation theory is that one need not start all over when

a higher order appreximation or the effect of a new perturbation is required.




PART 11
APPLICATION OF CANONICAL TRAKSTORMATION
THEORY TO THE OPIIMAL LOW <FHRUST TRANSIER ééf

In the following discussion, the the;)ry outlined in Part I will be apphed
to the problem of obtaining approximate analytical solutions to the optimal low-~
thrust trajectory problem. A base solution which ropresents the total solution
of the coast-arc problem (i, e., the optimal trajectory problem when thrust is
zero) is obtained for both the two dimensional polar représentation of the optimal
tra jectory and for a three dimensional spherical representation. The time rates
of cha}nge of the base canonic con‘stants for the planar problem when the th;ust

effects are included are determined also.

II. 1 Introduction

" Before 'the theory of Part [ can be applied, the optimal trajectory problem
must be expressed as a well-defined Hamilto_r.xian system. That is, the yiven
variational problem must be reduced to a system of first-order ordinary differen-
tial eq;xatioqs deﬁ.ned by a Hamiltonian funcﬁon and a set of 2n+2 boundary
conditions. |

Conslder the problem of extremizing the integral
t

1= 1 Gx, t)dt, ‘ - M
o
subject to the constraints ¢
X, - flouw ) =0, (=1, (2

53
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and the geometric boundary condftions

xi(to) = X, "i = 1,00 .00) {5

Mi(xf’ tf) = 0, (t =1,...,p<n) {4)

where x is @ n-vector of state variables and u is a m-vector of control

0
variables. The problem can be formulated as a Lagrange probleml in the
calculus of variations by introducing a set of unknown multipliers Xl, e )‘n .

and forming the augmented functional

t
£ n .
1= Xt[mx. B+ oz A - 1)t (5)

i=1]
°

If. I is fo be an extremal with respect to the choice of u(t), the following
nécessary conditions must be satisfied:

(1) Lagrange’s equations must be satisfied everywhere in the interval,

tostftf. i.e.,
4oL, e -
at L os) ox Y (i=1,...,n) (6)
. i i :
3L ., (1=1,...,m) (7)
du : . .
where
n *
LB Glx,t) + & MN(x, =
o f=1 i 1-“ i

and _

v+ bt

Sor ar o e Y S——

Lo ——
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{ii) a set Qi transversality conditions, sayﬁ )
A t) = 0 S 1,....n-ptl)
,Ni(xf Xf tf) (i 1, s D-p 1) ’(8)
must be satisfied at the terminal time.

The system of Equations {2), (6), and (7} can be expressed as a system

of first-order equations by defining a generalized Hamiltontan function
n
H¥(x, u, A\, t) = £ Ax, - L{x, x, u, \, t), {9)

and then developing Hamilton's equations, i.e.,

* . %*
_ oHx . 8H*

i 8)\i i i)xi

x . (i =1,....,n) (10)

Equation (7) and Equation (9) can be combined to yield.

9H* _

Bui 0. (i =?’l....‘.m) {11)

In addition, the Welierstrass conditionlo must be satisfied if the functional
defined by Equation (1) is to be a minimum. This leads to the further require-

ment that

S.m . m 2 OO
o 3 8%-18:% 6u16uj >0, S ey
1=1 §=1 i3 L n

for all admissible tSu1 and 6u’ . If the mequalitf holds in Equation‘r(lz). the

extremal is @ minimizing trajectory. If the equality holds over any portion of

-




B oo

'kj{,i: - ﬁ.g
y | o
.the tajectory, that portion is referred to as. a8 singular arc, In the subseguent
. discussion it is ‘dssumed that Equation {12} is a strict inequality for a!fﬁ
toststf. | |
In most optimal trajectory problems, Equations (11) and (12) can be used
to express the control variables as functions of the state variables and the
Lagrange multipliers, say:
uy = gi(x, A}, (i=1,...,m) (13)
% Consider the composite function
- H(x,\, t) = H*¥[ x, \, glx, \), t]. (14)
By Equations:(ll). it follows that:
1 8H _ 8Hr ;‘ pH*. 29, _-BHE s (15)
axi axi =1 i)uj 8xi Bxi i
: : m 8g . ]
8H _ 8H* o 8Hx 7 _ 9H* _ - e
N ' S
8)\i 8)& §=1 t)uj i a}i i

since aH*/au’ =0 for §j=1,...,m. Thus, Equations (15) and (16) are
Hamilton's equations for the Hamiltonian of Equation {14). Equation (14) is

a function of only the n state variables, the n Lagrange multipliers, and

time.

Therefore, Equations (15) and (16) along with the boundary conditions of
Equations (3), (4), and (8) represent a well-de'ﬁngd Haniltonian system des=-

cribed by the "generalized coordinates" {xl . “ves rn} and the “generalized
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momenta® (A

1

Jeeas )‘n}' Thus, the cld:f@%cal porturbation theories of

i
LR

Hamiltonian mechanics are now available for the optimal trajectory problen:. k

11.2 The Planar Problem

Consider the problem of minimizing the time of flight of a vehicle powered

by a continuously-thrusting engine where the thrust and mass-flow rate arc

assumed constant. Although not a necessary assumption in what follows, it will

generally be assumed that the thrust is small when compared with the gravitational

force of attraction (e. g., a near-earth low-thrust mission). In this section, the

state ©f the véhiclé will be described by a polar coordinate system.

1. 2A The Planar Base Solution

The equations of motion for the vehicle are (see Fig. 1):

2

. L v
r = u u=-——L+"sina
r 2
: r
. v . uv' F
0 = — vV = =" 4 ™ (cOsa
r r m

= +m_(t-t).
m m, m, (t -1 o)

The gene_ralized Hamiltonian function can be written as,
4

ke ‘ e \ ) H* z ¢ )‘if‘ (x, e, t)'
: =1 ‘

U 19)

{17)

s

where the f\vmctionsf/ f1 {x, e, t) (i =1,...,4) represent the right-hand sides

of Equations {17) and the variables X, 1=1,...,4) represent the state vari-

ables. r, 8, u, v . The control.'(z, "can be expressed as'a funguon of the

A oy AR w4 b

[

e b s
e
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Laagtange multipliers by applying }‘.tjuatic;ns 121y and (12) to the Hlasitonia

of Lguation {19}, i o.,

=X -\

: B 4 3 o
cos a = “:a:s::zawmzzr sina = Mgm . (30)
\/x PN SRR
3 4 3 4

Then, on substitution of Equations (20} into Equation (1Y), 8 new Hamiltonian

H({x, 2, t) is determined

H(x, A\, t) = Hx[ x, A, a(0), t] {21)

T e e o

uv. 4 _E f,2 2
4r] mx +x4. (22}

H{x, A\, t) = [)Llui-k 3

2
\'A LA .
2r+)\3(r rZ) »

Equation {22) can be partitioned into a base Hamiltonian Ho and a perturbing

. F [ 2 2 .
Hamiltonian, = )\3 + x4 . l.e..,
F 2 2
= - =i, o+ .
H Ho 3 x4 ‘(23)

H the thrust, F, 1is zero, then H = Ho’ Physically, Ho is the variational
Hamiltonian for the coast-arc problem and it is well known that closed-form

17.18: 19 However, to apply canonical per-

solutions exist for this problem
turbation theoxy one must have a sulution to the Hamilton-Jacobi (H~J)} equation

for this problem in terms of eight canonic constants.

Before writing the H-J equation for Ho. it will be advantageous to consider

a physical interpretation of the problem. Since thrust i$ zero, the




e ;‘?:‘%T?’S’ﬁw%%mm’“ 4

k ating function.

ordinates and the ).i

with

% the motion the new momenta, i.e., {a 1@

'$=rpl+epz—uq

2

"“K
4

e Q

=)\
"3

. momentum of the crbit should be ccnsténts of the motion, Also, Ho does

0 docs not appear explicitiy in Ho' so the conjugate variable for 0

4}’,

use of a simple transformation (see thatioh (1. 43),1.e.,

JON

state variables represent a Keplerian orbif and thus, are not atiecte i by the

: Lagrange multipliers. Hence, for ti:e base problem, the energy and anvular
not contain time explicitly, so HO should be a constant of the motion; and

should be a constant of the motion.. Thus, four constants of the motion are

since then the forr

.readily apparent. To apply the H-]J theory most effectively, a simple canoun~

ical transfcrmation should be used to make the above-mentioned constants of
remaining constants of the motion will Ibllow by differentiation of the gener-

1f the H~J equation for Ho is written with the x1 as generalized co-

as generalized momenta (as is the case in Equation (22)),
1 then advantage cannot be taken of the constantsof the motion mentioued above.

b However, if half of the momenta are switched to coordinates and vice versa by




then full gdvantage can be taken of the known constants of the i otron,

Substitution of Equations {24) into Ho results in the following Ha:niltom‘én

2

p,p p q,p.p

' 2 4 4 Iy 4 374
’ = O e —— e 25
Ho (a. p) PlP3 a q3(q1 qz) * a, {25}

1

In order to find a base solution, a canor.cal transformation from the { g, p}
set to a new {Q, P} set must be performed such thut the new variables will
be constan{s of the motion. The generating function for such_ a transformation
can be obtained by solving the H-J equation.

The H-J] equation for HE’ is

8, uo(q. 88, - :
sc * Ho (4 500 = 0. (26)

Since tand a, only appear once each in Equation (26), and only in the form

'Z"S{ and -2'2‘ , it is reasonable to assume a partial separation of variables for
2

S; 'j- e.,
= . *
S Sl(t) '+ Sz(qz) + S (ql. a,. q4)- {27)

By substituting Equation (27) into Equation (26) and using independence argu-

ments, the following expressions are obtained

‘ b..'-.. E—S—L = @ Q-S- = -8-8—2— = q -' (28)
8t 8: 1! 81,  dq, 2

where nl and az are constants. Substitution of Equations (28) into Equation

(27) leads to



S e—t

+ S# ‘ ‘: q., 74‘ ~> ‘ a
2 g ageay) ‘

5 % ¢t 4 &4
£

1

Catm

Yor a complete solution of Equation (26), four indepondent constants aie
requircd. Thus, two more constants are necessary, As previously mentiored,
' knowledge of the two-body problem could be uscd to define the other two, .o, ,
the energy and angular momentum of the orbit. However, these constants can
also bhe o’btained by inspecting the characteristic system of the H~] cquation,

which is now a function of only three variables, i, e. ,

9 _er . Py o_er =104 o)
dr api . dr é)cx1 ! N -

where < is an arbitrary parameter. Note that for the case: + = t, the

characteristic equations are just the Hamilton's equations associated with

|
1 , the H~] equation,
2 dq
To'obtain the angular momentum integral, consider the a-:' and
dp
;—' equations for the characteristic system, i.e..
dq] - dpl - _P3P4 ‘ 'v s (31)
dr. "3 dr q, S
Note that . .
2 BT B )
dr dql dr dql 3 _
dp, Py,
so from Equations (31): a;- = - ‘(;" . Substitttion of this result into
1 } :

Equation {32} 1_eads to & simple integration which gives




To obtain the energy integral, Equauon‘_(33) is used along with the

characteristic equations

—L -, —3 .3 (34

Noting that

dp3 - dp3 dql ) dp3 o
dr dql dr ;iql 3
dp3 - )
and obtaining aq—' by eliminating T in Equations (34) leads to another
. 1 .

.simple integration which gives

.The four constants required for the complete solution have now been
obtained. The only remaining problem is to incorporate them into the gener-
ating function of Equation (27). This can be effected by considering the

following integrable Pfaff differential equation

858* a5* 95 *

ds* = 22-4q + 3o% da, + oo dq, . 38

.9q, 1 da, '3 8q, .

where

- 85# - *l J _ 2 B 2
ERTH Pyla;) = a, §3 + 2331\’ @49,
85*

e, - oen

%3 S

Y

= pq,) =
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r’Jq1 1l ! q3'
Equation (26); that is, 2q

q4) " is defined by 5u’bst1’tuung; Lauations: (3“;’)&;‘:{0

%

is defined by satisfaction of the H-] equation,

, ! s Faa
As shown in Section 1. 2B, since T and T°— depend onlyon q , the
8q3 8q4 1

generating function 8% is necessarily of the form

8% = p3(q1)q3 + p4(ql)q

4 ¥ S'(ql) ' (38)

where S'(ql) is to be determined. In the first of Equations (37}, a * sign
is included since Equation (35) is an equation involving p‘;. Physically, this
corresponds to the radius increasing from perigee to apogee (p3 :r > Ob)’and
< 0).

decreasing from apogee to perigee (p3 S

r
a9S* .
'é;" as defined by the H~J equation.

1 . e
From the argument leading to the form of Equation (38}, the terms of ‘gi*
' 1

To determine S'(ql), consider

which contain q3 and q4 can be omitted, so then

' = B8*
s'a) = b, )8 (39)

88* ., . . 8S* .
— ) is that portion of = which does not contain q_orq..
aql Bql 3 4

Integration of Equation (39) yields

where (

e.q.p,la,) pa e -eq
s'q) = s e AL
= . (14 .

a

4 ,
(40)

The integration of Equation (39);1nvolves an assumption on the signof «

o
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(the negative of the eneray) and ¢ 4 >0 wds assumed fbr the tesult -\m;;fv; 1t
Equation (40). V'Ihis assumption restricts the solution to t'ﬂsji‘("((!!ies where thic
energy is negative (i.e., circular and elliptical conditions)., Qther S'(q l)
functions can also be integrated fc;r the parabolic and hyperbolic cases,
Consideration of Equations (29), (38}, and {40) then gives the generating

function for the base solution:

S =Va1t + azqz + P3(q1:03o¢14)q3 + 94(‘31:03,“4)(14
' (41)

[
+ 8 (qllallazla3la4) .

By ]acbbi"s Theorem, the remaining canonic constants of the motion are obtained

by differentiating the generating function with respect to each of the ai‘s , l.e.,

as.
B, = o
i aai

set of canonic constants are:

As functions of the original variables (see Equations (24)) the total

2 .
= - - v o v_o_o» uy
A e -r2)+"4r
PR
¢3 = IV
¢, = -l.xZ - v2 + &
4 r
. -a r
8s M ogu g - Py ;
= = Lraand b - 4 .
By = 5 =t 0, *lul 3/t sin . (42)
4 B T4
pr—«zZ
8s u -1 3
P2 8a, - @ " Sn [r/ z_, .2
Ve 4“3
g8 }_4. a x3 k ELGB(QB pr){»p\&(p eir_l
B, = = - + 23 + +
3 da r 2 ru

3 . Tu m(pz’-a‘c;)
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~and energy - = ¢
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B

A ar e p TR ‘]
8 3 A ul by e 3 0 s
Py ™ 2c, " 2u - et lu] 2 /2 B 2 :

4 4 4 c4 [T 4 3‘”3_&

2 2 2 o2, 2
pal(asa‘lr -2p T 4 p.a3) + a203a4(a3 ~ ur}

‘+ Zniru(p.2 - a4a§

The set {a, B} represents the closed-form solution to the coast-arc
problem. The subset ' {a3, 04, Bl. pz} defines the Keplerlar; grbit, and the
subset {a] '@y ps, ;34}’ defines the solution for the Lagrange multipliers on
a coast-arc. However, Equations {42) possess two singularities: r Zu=0
4 = 0. Thus, the class of missions to which the set {a., S

is applic'able is somewhat restricted (i. e., elliptical trajectories with nonzéro

eccentricity). Recent attempts to obtain another base solution free of the

r =0 singularity have been successful and the new solution is now being

studied. The resu@ts of this analysis will be presented at a later date.

1. 2B _The Canonic Perturbation Fquations .

The solution to the problem defined by the total Hamiltonian of Equation
{23) may now be attacked by canonical perturbation theory. The perturbing

Hamiltonian is e — o

. . E [z, 2
Hy = mm VRt Ny i i A

To develop the canonic perturbation equations, i.e., the time rates of change

of the base canonic constants, the perturbing Hamiltonian must be expressed

“as a function of the canonic constants and time. Thus, the canonic constant

expressions {a{x, X, t), Bix., M\, 1)} of E&matlons {42) must be inverted to.
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aqive {xfc‘t. 8, 1), M«, B, 1)) . Such an invé’r»;scm 15 x.;wi ;v‘~;:§‘x;'!“- TN,
form :‘-incé the {Slwqua:ion 1s a form of Keplur's uﬁmtmn. }mwwm, the
original variables ({x,\} may be ex;;;cssc»;i as functions of the canonic con-
stants and thie radius, so the implicit function theorem may be employed 1o give
i the desired perturbation equations.

Since the perturbing Hamiltonian is only a function of }\3. >\4, | and m,
only the [31. 133, and §4 equations need to be invcrted to obtain ( k3(c,p,r},

k4(a. g.r), t{r, a, B)} . The {31 -equation actually defines the implicit

relationship rgt)r_\_(yhich will be studied later.

Recalling from the first of Equations (37} that p3(<13, a , 1), the 63»

4

equation can be rearranged to give

. 2
a b - pe g
1 4
°)‘4Eq4#(qx)‘33+(ﬁ)q3'[;‘+ A
173 3 p3(|.z - a4a3)
2
0 03(a3 - uql) -
‘ p (uz ~a az) !
3 43
1
or,
; Ay = Aa))B; + ANQ . eq. e oy + ALA), eg0 e e,
(44)
tAfq e .0 )e).

Rearrangement of the P 4-eQUatidn gives

2
e e, - pay)

2 2

- ‘39\['“3”;“1, -e .9,
( 5/2 I
q,{c ) .

=X, =4y ‘= (-2p,)B, + {
’ 1

3 8
| Gle = a0y 4

o

B : , 2. 22 2 - Z 3 Lo 2 2 } ,
- - ; - i3 c 1
-y BT . " @, u?‘m‘;)ql +(5uc3c4 b )q’-fc {3 Qe “.ip

3

czq (pz -c cz)
471 43
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A3 = Bylayc g e 3B, + Bla). a0 )e ERLAN

1 , e
3 3 2 ! Bylayee

In many optimal trajectory problems (assuming a {ixed initial state) the {inal
value of 0 is arbitrary, Thus, from the transQérsality conditions, }'2’.“ €y 0
for such a mission. Then, Equation {44) would lose the A3-term and Equation {44}
would lose the Bzuterm.

Equation (45) is of the form gs(a . B ql) whereas Equation (44) con!;air‘s

qy Thus, after substituting Equation {45) in Equation (44), the following ex-~

3 pression is obtained.’
q, = Axﬁs + ABB, + (AZBZ + A3)u2 + (AZB3 + A4)al. . (46}

The pl -equation gives us

" -1[“"“4%__

t=5l- 04 a3/2 sin J-;—Z——:?].
4 4 3

Then the perturbing Hamiltonian can be expressed as

M Wit e, e, )] \/“3(‘11' @y By + a (a0, By B (47)
Thus,
Hl’(a' p' 1), = HT[“O ﬂl ¢(tt a3n ¢4c pl)l : (43‘
where
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is-an implicit relationship defined by the ;’3.! —équatwn. It follows that the
pe:iurbation equations are given by
¥ ¥
dut . DH' . 8”1 . 8Hl 8
dt 8;31 8531 ar api
(i =3,....4) {30;
# *
i T Wi Wi U
dt Ba1 801 or Bai

The partial derivatives of ¢ with respect to «, and ﬁi can be determined by

i
applying (ii) of the implicit function theorem (see Section 1. 2A). That .s, the

ﬁl-equation defines a function

2 2
J @5 ¥ 2pq, - eq,
a

\ll(ql: t, a3o a4: 51) st - ﬂl x

. 4
‘ p-a,a
TR B S IO

E ¢z3/2 sin [J—r——zl 0,

4 TR TG4

from v.;;hich the desired partial derivations can be obtained by solving .
o | o _ :
8r da da - ) e
- 8!' 3?4 304 . PO ‘A<t‘_"-‘ . 5 E sd o

wpe , B _ .
or 8p, TN .

L

The solutions of Equations (51) are:
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Ha : 2 2
3 q !(P e, 3)

i I D _3 :
da 2, 2 2 2 5/2
4 Zaq(u “4“3)“1 ql(a‘;)
(52,
-1 P9
sin ﬁ)
VBT
% o .
op, Py v

where

- 2 _ 2 2 2 2 2,2 2
D= aé(p a3¢z4)ql + 5a3a4 by )q1 + a3(3p 2:.3«14).

Thus the right-hand sides of Equations (50) are now well-defined functions of

fa, B, q, }. Application of the chain rule to the left-hand sides ines

¢:lai _ dai dq‘ - dtz1
dt dql' dt 3dql
ds, _ dp,  da, - 8
dt dq, dt p3dql ‘

so Equations (50) can then be written as

gf_ln _ _1_[5“’{} BH* g_q_] _
-dq, P, 8B, dr 8p, ) i
: . . B - . (i'g l‘nut“'} (5“?
“dp. - _, ®H® _ BH¥ _ S T
dq, Py 8, 8r da, ‘ -



" 1=nause of the change of independent varfable from  tag, , Eitaticn.

H
(53) are not i canonical form. If a further Hamiltontan analysis 15 €usinad,
the canonical form can be regained by reworking the problem with 1 as the

independent variable from the beginning. This presents only a slight modifs-

cation to the base generating solution and canonic constants,

The expanded forms of Equations (53) are given in Appendix A.

o3 se Solution in Spherical Coordinates
The base solution which will be developed in this section is a slight
modification of a base solution formed by Iv.!iner 20. The main difference is
in the usé of a simple cancnical transformation and the method for integraticn
of the generating function.

Consider a spherical coordinate system (r, 0, ¢) defined by the trans=~

formation equations

rcos 6 cos ¢ -

0

»
]

rcos 6 sin ¢

T <
[}

]
[}

.rsin @9,

The equations of motion in a modified spherical system are (see Fig. 2):
R R v
u o=+ - By m[cosecosr_cosz* + sin 7 sin 6]

T rscoszﬁ N rz

2
W
v o= - secZOtana + r'f:n'[slnrcosa ~ ¢cOs T &in 6 ¢os »¥ ]
r .

-

w =;_r£‘; £0s v cos O sin x* L

.
#
=

{54}




i .
5 il
0 = S
2
14
N W
- R#\
¢ = {
r cos 0
m = =g
where 2% £ x~ 4 and the mass, m, is treated as a state variable.

i

Note that this coordinate system takes advantage of the angula‘r momentum
integril by defining w = r?‘& cosZB (instead of the usual w = r4; cos o).

The variational Hamiltonian for this problem is

Y W w w2

* = —— e - S ; A

H* = )‘1(3 + 3 2 2) xz(zsec 6tano) + 4u.
r rcos 6 4 r

{55}
v W - E_ .
+7\52+k62 > x¢+mA(x,A),

T r" cos 6

7

where A {x, \) is the coefficient of .Fn_ . Since interest here is only in

.to;ming a base solution, the expression for A {x, A\) will not be developed.

Lef H#* be written as

H*EH°+-£-A(><,1),

where Ho is the baSe Hamiltonian., Note that neither t,¢, nor m " appear

explicitly in Ho .. Thus, their conjugate momenta {i.e., Ho. \,, x7) are

6

consiants of the motion so the simple transformation of these vatrables will be

‘the identity transformation. TO make use of the known i.tegrals of the two- o

body problem, three of the state variables must be tranrsformed to momenta and

vice versa with three of the Lagrange multiphérs. Thus, define:
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pl == u pz "l pﬁ = ’x"v
‘ R 1%
= = )\ wo ok £ =X
Py TNy Pg = A Pe “ 1t ot N
Then, application of the simple transformation of Equation {1.43), i.e.,
3 7
S = - T Xxq + ¥ xXf o,
i=) 11 gL,
with
3s as a
= = I i = N .
M= oox Py 3q, (1=1,23)
=~ 88 - 8 -
)‘i = ox qi 8px (! 4, 5, 6: 7)
gives
. = e - = e A
qy N qQ =N 3 3 :
(57}
Ty " PR W= ¢ gem
The new base Hamiltonian is
H (@, p) 2 H [x(q, p) Ma. p)] .,
or, : . -
: g p’ ) p?
4 - ..L —-_...__L.__. - B ...;. 4
Hy = =0, (=3 ¢+ 3 coa? 2 )t a5 sec qs“’“qf.’_
9 94908 95 9, .9
. P : P
R it —_—
PR R bR 2 2 TPt
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. The H-] eq wation for H’; is’

83 as
pa2N ® P-4 .z A
ar T H (a Bq, 0, { el

where S{q, ¢, t) is to be determined as a function of seven independoent
q6 Q.,
appear at all in the H~J equation, it is reasona~

constants {al PR c.,) « Since appeoar only once

and neither t, Qe nor q_'

ble to assume a partial separation of variables
= * :
S sl(t) + Sz(qb’ + S3(q7) + S (ql....,qs). {5%)

Then substitution of Equation (59} into Equation (58) gives

s B _ s _ % s _ %5
¥ . ’ = L
Qt at 1 bq, 89, 2 9q, aq7 3
so
S = ?lt + azq6' + n3q7 + S*(ql.....qs). ‘(60)

Substitution of Equation (60) into Equation {58} and multiplication by qi gives

L2 L 95% 2 } 8se
"-.},.'(q,""“q-‘"») = qee, - [ ( + { )

9q aq
2 q4 cos q5 3

- +
w1 qz[“‘” g tanqg 8ay da, da, 4

5. pSe ‘z ‘ 85* ' L
+ + - . -
83 0q 8q, @ = 0

: 2
2‘ cos q 5

(ﬁ.’z] + é& a5 ’qz (6‘)

ot —————



By txivéstigating the characteristic system, thiee more constanis can
be found as follows. Since q3 does not appesr explicitly in T above, 1t

follows that

BRI T :) N - = .
g 8q3 ¢} p3 constant = 04 R
asx a5% ,
where p, = T . Thus, the 7 — -~ terms in Equation (61) can be replaced
by @y
. . 88«
Consider the characteristic equations for p.* =™ and q_, l.e.,
2 aq2 5
9_‘12_ = £ . --a2 secZ ' tan
dr 8q2 4 .q5 qs
TR S
, : dpz :
Application.of the chain rule to r gives
T
dp, _dp, dag ‘_’f_z_.l'a - - sec? q_tang
d~r qu dvr dqs 2 4 5 5" -

or,

2 _ 2 2 - 2
P, = 2a4_5‘ sec 4:15tanqﬁdq5 tag

where knowledge of the two-body problem has been used as a guide in

picking the constant of integration to be ai instead of «a 5° Then,
) 2 2 2 B B S A
Y - W DR 237
P, = -e sec q. + a _ E N (6

TR e R

TR AT
S - AR
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Consider the characteristic equations for P ET ard G, . aftes
c .
0

taking advantage of Equation {62):

: 2 2 2 2
dp] } dpI dq4 . (us 04 sec qs) . 04 -,
dr dq, dr q
4 4 v:{4 cos q5
dq
4 = 2
dr q4 pl
or
2 2
dp] _ (aS e, sec q5) L = ¢, T
pl dq4 q3 q, cos g qZ
4 4 5 4
or
aZ
1d. (DZ) - T '
2 dq4 1 3 2"
9y 9
Upon integration, the energy integral is obtained:
) aZ L
pz = & _ 5 e, . : (63)
1 q 2 6 .
4 o:{4

Six constants of the motion have now been obtained. Jacobi's theorem
requires seven for a complete solution Ato the base solution. The final constant
can be obtained by substituting Equations {62) and (63) into Equailon (61) and
noting that another separation of variables is possible, i.e., Equation (61) can

be written as




AN ittt [

e e

e o o) q' (=5 RS K
-~ o - — b },l q ’:""' : -
118 .
4" 1 ’3 1 q4 4 ¢ 14 dg!
= -“"~8$* "“‘aq’:: - czq seczq tan q - 0 SOCZ ot
dq, 4, 42 T 1ol g = %% s -

Thus, assume a solution of the form:
= [IF] " 5
s et +aq +a.q, +a4q3+S(ql,q4)+S(qz. qs)- {65)

Again making use of the two-body problem, let the new constant be denoted

by LR Then,
2
‘s 2 85" ag’
e ey = q,le, - a,0) *ql(q SR ta, aq . aq (60)
4 4 1
and,
a_a =-§”S':'§’S"—‘-a2 s 2 tan - a.a sec2
7%5 8q, da, 49 S€C Agtandg -~ a,a, g
where each side of Equation (54) must be constant since the left-hand side
is only @ function of ql and q4: and the right-hand side is only a function
of a, and q5 .

The functions S'(q}. q4) and S*" (qz. qs) must be determined in
order to define the generating function S. Tofind S8' and S", two Pfaff
differential equations must be integrated, i.e. ,

. 88T as'
ds rq clq1 + aq dq4
1 4
and, B en
) a. " 8 " v
ds" = dq., + dq .
8qz 2 8q5 5
where . )

— o v PR -
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85! as! 1 2 2
Kol o el = o+ - -
{qa .} a6q4 + qu4 QS

qu Dq! 4 q4
L]
Q&u* | E— e ¢ -qz(a -a_ o)
8q4 a -a,q° + 2uq. - c.a 57 4' 1 3
4 674 4 5
aZ
5
+ ql‘( q - r)
4
(68)
8§II = -a—-si _ i 2 -
% 9q oq (ag) @g - @, sec” q
2 2
8st _ ). _ 2
8q *F7 17 2 @577 T 9%45€C 9y
5 e~ 2 sec (q .
. 4 5
- azq set::z tan ‘
492 56¢ Agtandg » - i
Thus, Equations (67) are of the functional form
LI, )
das Rl(q4) ciql + Rz(ql. q4)§q4
o
ds* = Tl(qs) clq‘2 + Tz‘qz' qs) dqs .
A. ] "
As shown in Section 1. 2B, since 'g%- only depends upon q4 and'g‘csr only

depends upbn qs. then

3 \ |
s = Rla)aq + S (a,)

S = ?l(qs) q, + S0(ag) .

- » . [ ——
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where S(‘)(q 1)and S(’;(q‘i) can be obtained by imcgmtm;j
- ’}. i .
g, ~term and a3 without the q_~term, respectively, Then,
} qu 2 R
a, -a. a -0 -
S'{q,) = : 30. )q4pL ES : ! 36)9 sln'l (i.-::_:‘ifm 32}-—-—
o' 4 €, ‘ 3/2 f.: L .l
06 it .6. 5
-1 Ky " %5 -
+ agsin J?__au&)
dgVP 6°5
and , (69)
i N a_ sinq < & tangq
-1,°5 5 -1, %4 5
07811‘1 (J—Z—-—a—z ) + azsin (az_a | I
%5 T %4 5 4

As in the planar case, Equations (69) are only valid for elliptical motion.
Substitution of Equations (68) into Equation (65) leads to the generating

1

function for the base problem:
1 J_ 2 -
* a, APV SV

+
t aqu + asq? + a4q3

.$';'==ul
L ra -az
2 -1 4 5 .
sin © ( 2_0‘_22:
VB " %%
(70)

22
+ -
\/“5 “45%¢ 95 9, * 4

{a. = a_ o)
—_— 3 - 2 -
J Ggdy t 20Ay - 9

‘s
Ty @ sin q, . -

* o sin (-5‘-—-—-5) 4 e, sin ! {
“5 7% ' “s " %4




Then, Jacobit's theorem can be applied to give the remalining seven cunstants

08
of the motion, L.c,, B = 3° for { = 1,..., 7. ‘Thus, the totsl set of

da,
constants of the motion are:
2 2 2
p P P
e, =Ql("‘§' + 32 J'I'E)"qz("?,_‘ sec qstanqs)
U4 Qg0 95 9 94
P2 P
- p,p, =P - p + p.o
471 5 2 6 qZ COSZ 7
94 4 R
2 " P
“3 T Py
4 T P3

2 2 2
¢y T * /pz t Py sec qg

(71)
=4 _ 1 2 2 2 -2
L a, 2 (P, + Py sec ;) Py
9

- 2 2
— * -
e, = z 2 2 Lagde, - pe) + ayp 0,
p, + Py sec” qg ;

q
Hh o2 2 2
- + -
7, (p, + p,sec” q, uq4)l
| 1 [ _ 2", _u -1, ¥ ey
By =t *9 %gdy t A, ~ ey * T34 sin o (=R )
6 o %6 "y

e tan qs

. q F sin’} 0 S
B, = 9 ¥ sin !f“ffj?’
L “s "% Sl
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i 2 . {
6 eq - aéqasec qé ) iitanqs(csz + c‘;u?) :
4 3 p ' 2 _ 2 ,
2 pyleg =< )
-a a [ a 02 + e, - 2 2
525“1,(5‘12*7(65““46“’
5 2 p q,pP z _ 2 ;
a 4P 2 4 A
_ agle) - a.0) . poglay - 0)(k ~a.a,)
a, q,p 2 _ 2
6741 abq4pl(p c6a5)
2
(e.a. + ¢ _a _a )
+ 14 Z5 4 tan q
2 5
p,lag —u4)
a_a_ | cz)
9 g9 1M, " 9y
g, = - +
¢ Zpl 2q,p(p -a uz)
41 65
;3 (e) —eyolk sin”! ¢ a ‘“6“4)
2 5/2 2 2
] 6 [ 5 ‘-0605 .
2 2.2 2 22
. (a), -0 a)(p%e, 0506) .t (5e 05}* on> da, + (3T, - 200, 4
6“‘ P )cx‘ipl
Bq -az e _sing
- - -
p,’n*sxnl(—-————i--———“ ) T osin”! (=R

q pz-na cz-cz) :
4 65 ' 5 4 ,
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The set {o, B} represents the solution to the coast-arc problam in

spherical coordinates, As with the planar problem, Bciuatlons {71) possess

singularities at r £ pl =0 and eneiqy = 0, ‘Thus. this solution is also

restricted to elliptical trajectories on which ¢ » 0 or r < Q.
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PART HI
CCGONCLUSIONS AND RECOMMERDATIONS

. Summary

In the discussion presented in the previous sections, the aprlicatios
of canonical transformation theory to the problem of obtaining approximate
analytic solutions for the motion of a continuously-thrusting space vehicle
has been described. The pertinent aspects of the theory are rigorously dis-
cussed in Part I. In Part II, the application of the theory to the optinal tra-
jectory problem is described, and a base solution for the planar problem, as.
Iormulatéd in polar coordinates, is obtained and the time rates of change of
the base canonic constants for the planar problem due to the effects of the
engine thn:ust are developed. Finally, a modification of the spherical coor-

dinate system base solution given by Minerzo, is presented.

HI, 2 Conclusions and Recommendations

Based on the results obtained in the previous sections, it appears
that canonical perturbation fheory can be used to obtain approximate analytic
sélutions to the equations which govern the optimal motion of a continuously~-
thrusting space vehicle. The constants defined by t}}e base solution can be
used to describe the coast or zero-thrust portions of the tra jeétofy. The
equations which govern the time rates of change of these constants under the
effects of the thrust can be us;ad for numerical studies of the vchicle motion.

However,. the base solutions presented contain singularities for the
cases whfere the radiql velocity and theie'ncrgy are equsl to zcra.*"fvho
singularities rostrict tvhe base solution to elliptical orbi!s. ;:;nly. As a

81




S T I O P " - ; IR L TF

confequence, the basae solulions are not ap;'.\lu.-;umﬁ in thedr ontuvly o wch
missions ag escape tajectories, ITarth-Mars vansfer Uafeciones, snd nour-
orbital transfers.

It {5 recommended that future investigations be ditected towards
obtaining a more gencral base solution which is valid for both elliptical and
circular orbits. Consideration should be given also, to cbtaining solutions
‘which are valid for both parabolic and hyperbolic trajectory conditions.
Finally, the Hamilton-Jacobi equation for the remaining perturbing Hamiltonian

% should be examined in an effort to incorporate the effects of the thrusting

engine i{n the analytical solution.
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FIG. 1. Plonar Representation
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FIG. 2. Spherical Representation
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APPENDIX A

In Section 11, 2B, a method for the generation of the tates of change of
the base canonic constants with respect to radius was presented,  The tosults

i of zuch an analysis for the Hamiltonian of Lquation [1~29 are given below.

{ f—c..l- = f.fl“ N aa‘ + ) ?i.l.)
dr u )\2+)\Z 3 Bu ' 4 av
3 4 :
da
—2 = 0 ——> a_ = constant
dr 2

de

= en
dr ,2 2 4
+A
uVhg+hy

da a.
d R (\;u + %, =2)
T Jt. 2 3 4r
u x3+x4
d 9 8
RS Y- WA RN
dr. wWaZsnd 3o 4 av
" 3 74
dpg o8, op
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dr u‘/‘)f.“?. 3 3u 4oy .
3 4
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The expressions for p3 = u(r, a), x3(r. e, B, and_ x4(r, e, B) are defined

by Equations {I1-43), (11-53), and (I1-52'), respectively.
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